Flujo de agua en el suelo bajo condiciones de simetría radial. Contraste entre modelos

  1. del Vigo, Ángel 1
  1. 1 Universidad Camilo José Cela
    info

    Universidad Camilo José Cela

    Villanueva de la Cañada, España

    ROR https://ror.org/03f6h9044

Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 2023

Volumen: 27

Número: 3

Páginas: 169-181

Tipo: Artículo

DOI: 10.4995/IA.2023.19290 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Resumen

A review of some analytical models existing in the bibliography for the evolution of spherical symmetry bulb front advance is presented in this article. Surface drip irrigation is considered from a point (or quasi-point) source for a homogeneous, uniform and isotropic soil, in absence of gravitational force, neither water accumulation on the surface. Furthermore, a new analytical model for spherical symmetric bulb front advance evolution is proposed, based on simplifications in boundary conditions that can be assumed for surface drip irrigation. The model was deduced from the Darcy and continuity equations from a quasi-point source on the surface. At the end of the article, it is shown a comparison among all the analytical models mentioned and simulation results obtained through a numerical model that was validated and presented in previous publications.

Referencias bibliográficas

  • Ben Yosef, B., Sheikholslami, M.R. 1976. Distribution of water and ions in soils irrigated and fertilized from a trickle source. Soil. Sci. Soc. Am. J., 40, 575-582. https://doi.org/10.2136/sssaj1976.03615995004000040033x
  • Ben Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x
  • Brandt, A., Bresler, E., Diner, N., Ben-Asher, J., Heller, J., Goldberg, D. 1971. Infiltration from trickle source: I. mathematical model. Soil Sci Soc Am Proc., 35, 675-682. https://doi.org/10.2136/sssaj1971.03615995003500050018x
  • Buckingham, E. 1907. Studies on the movement of soil moisture. Bull. 38. U.S. Dept.of Agr.Bureau of soils, Washington, D.C.
  • Carnahan, B. 1979. Cálculo numérico. Métodos y aplicaciones. Rueda ed. Madrid.
  • Chu, S.T. 1994. Green-Ampt analysis of wetting patterns for surface emitters. J. Irrig. Drain E., 120(2), 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:2(414)
  • Clothier, B.E., Scotter, D.R. 1982. Constant-flux infiltration from a hemispherical cavity. Soil. Sci. Soc. Am. J., 46, 696-700. https://doi.org/10.2136/sssaj1982.03615995004600040006x
  • Darcy, H. 1856. Les fontaines publiques de la ville de Dijon. Dalmont, Paris.
  • del Vigo, Á. 2020. Simulación del flujo del agua en el suelo en riego por goteo superficial, soluciones analíticas aproximadas, caracterización del suelo y diseño de los riegos. Tesis doctoral, Universidad Politécnica de Madrid. Madrid. https://doi.org/10.20868/UPM.thesis.63840
  • del Vigo, Á., Zubelzu, S., Juana, L. 2019a. Algoritmo para la resolución de la ecuación de Richards en 3-D para riego por goteo: Método, validación y resultados preliminares. XXXVII Congreso Nacional de Riegos. Don Benito. Spain. https://doi.org/10.17398/AERYD.2019.A06
  • del Vigo, Á., Zubelzu, S., Juana, L. 2019b. Study of water infiltration in soil by Richards equations in 3D: summary and methodology validation. 11th World Congress on Water Resources and Environment. Madrid. Spain. http://ewra.net/pages/EWRA2019_Proceedings.pdf
  • del Vigo, Á., Zubelzu, S., Juana, L. 2019c. Soluciones analíticas aproximadas bajo hipótesis de Green-Ampt desde fuentes semiesférica y circular en superficie. Jornadas Ingeniería del Agua (J.I.A). Toledo. Spain. https://oa.upm.es/65070/1/INVE_MEM_2019_324240.pdf
  • del Vigo, Á., Zubelzu, S., Juana, L. 2020. Numerical routine for soil dynamics from trickle irrigation. Applied Mathematical Modeling, 83, 371-385. https://doi.org/10.1016/j.apm.2020.01.058
  • del Vigo, Á., Zubelzu, S., Juana, L. 2021. Infiltration models and soil characterization for hemispherical and disc sources based on Green-Ampt assumptions. Journal of Hydrology, 595, 1259-1266. https://doi.org/10.1016/j.jhydrol.2021.125966
  • del Vigo, Á., Colimba, J., Juana, L., Rodriguez-Sinobas, L. 2023a. Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrigation Sciences, 41, 141-154. https://doi.org/10.1007/s00271-022-00806-x
  • del Vigo, Á., Zubelzu, S., Juana, L. 2023b. Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico. Ingeniería del Agua, 27(2), 111-124. https://doi.org/10.4995/ia.2023.19328
  • Gardner, W.R. 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci., 85, 228. https://doi.org/10.1097/00010694-195804000-00006
  • Green, W.H., Ampt G.A. 1911. Studies in soil physic I: the flow of air and water through soils. Journal of Agricultural Science, 4, 1. https://doi.org/10.1017/S0021859600001441
  • Mualem,Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Journal, 12, 513. https://doi.org/10.1029/WR012i003p00513
  • Neuman, S.P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resources Research, 12, 564-565. https://doi.org/10.1029/WR012i003p00564
  • Philip, J.R. 1984. Travel times from buried and surface infiltration point sources. Water Resources Research, 20(7), 990-994. https://doi.org/10.1029/WR020i007p00990
  • Raats, P.A.C. 1971. Steady infiltration from point sources, cavities and basins. Soil Sci. Soc. Am. Proc., 35, 689-694. https://doi.org/10.2136/sssaj1971.03615995003500050020x
  • Rawls, W.J., Brakensiek, D.L., Soni, B. 1983. Agricultural management effects on soil water process. Part I: Soil water retention and Green and Ampt infiltration parameters. Trans. Amer. Soc. Agric. Engrs., 26(6), 1747-1752. https://doi.org/10.13031/2013.33837
  • Richards, L.A. 1931. Capillary conduction of liquids in porous medium. Journal of Applied Physics, 1, 318-333. https://doi.org/10.1063/1.1745010
  • Roth, R.L. 1974. Soil moisture distribution and wetting pattern from a point source. In Proceedings of 2nd international drip irrigation congress. California. EEUU. 246–251
  • Šimůnek, J., van Genuchten, M., Šejna, M. 2006. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual Version 1.0. University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic.
  • Taghavi, S.A., Marino, M.A., Rolston D.E. 1984. Infiltration from trickle irrigation source. J. Irrig. Drain Eng. Eng. ASCE, 110(4), 331-341. https://doi.org/10.1061/(ASCE)0733-9437(1984)110:4(331)
  • Warrick, A.W. 1974. Time-dependent linearized infiltration: I. Point source. Soil Sci. Soc. Amer. Proc., 34, 383. https://doi.org/10.2136/sssaj1974.03615995003800030008x
  • Warrick, A.W. y Lomen, D.O. 1976. Time-dependent linearized infiltration: III. Strip and disc sources. Soil Sci. Soc. Amer. Proc., 40, 639-643. https://doi.org/10.2136/sssaj1976.03615995004000050014x
  • Wooding, R.A. 1968. Steady infiltration from a shallow circular pond. Water Resources Research, 4, 1259-1273. https://doi.org/10.1029/WR004i006p01259