Radio máximo de la zona saturada en superficie bajo riego por goteo a caudal constante. Modelos analítico y empírico

  1. del Vigo, Ángel 1
  2. Zubelzu, Sergio 2
  3. Juana, Luis 2
  1. 1 Universidad Camilo José Cela
    info

    Universidad Camilo José Cela

    Villanueva de la Cañada, España

    ROR https://ror.org/03f6h9044

  2. 2 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

Zeitschrift:
Ingeniería del agua

ISSN: 1134-2196

Datum der Publikation: 2023

Ausgabe: 27

Nummer: 2

Seiten: 111-124

Art: Artikel

DOI: 10.4995/IA.2023.19328 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Ingeniería del agua

Ziele für nachhaltige Entwicklung

Zusammenfassung

A numerical model able to study filtration patterns under drip irrigation conditions was presented in previous papers. The tests concluded that, the model is robust and efficient regardless of the soil characteristics. At the same time, a simplified analytical model was presented for superficial drip irrigation boundary conditions, which describes, the evolution of the bulb over the time as a function of the applied flow rate. This model is based on four soil parameters: saturated hydraulic conductivity, suction matric head at the wetting front, and the initial and saturated soil moisture contents. Simulations for soils characterized with functions type, Gardner, Clapp and Hornberger and van Genuchten-Mualem, were performed to get the maximum saturated radius on the surface at constant applied flow, for each of these three characterization schemes. Then, a set of three empirical equations has been obtained. Moreover, via the simplified analytical model, an expression in steady regime has been reached for the maximum saturated radius zone as a function of the applied flow rate and soil parameters. This paper presents the set of empirical equations obtained by simulation, and the simplified analytical model, as well as a comparison of these two models with the Wooding analytical model, which describes the same irrigation characteristics.

Bibliographische Referenzen

  • Amin, M.S.M., Ekhmaj, A.I.M. 2006. DIPAC - Drip Irrigation Water Distribution Pattern Calculator. 7th International Micro-Irrigation Congress. 10-16 Sept. Kuala Lumpur. Malaysia.
  • Ben-Asher, J., Charach, Ch., Zemel, A. 1986. Infiltration and water extraction from trickle source: the effective hemisphere model. Soil Sci Soc Am J., 50, 882-887. https://doi.org/10.2136/sssaj1986.03615995005000040010x DOI: https://doi.org/10.2136/sssaj1986.03615995005000040010x
  • Bresler, E. 1978. Analysis of trickle irrigation with application to design problems. Irrigation Science, 1, 3-17. https://doi.org/10.1007/BF00269003 DOI: https://doi.org/10.1007/BF00269003
  • Carnahan, B. 1979. Cálculo numérico. Métodos y aplicaciones. Madrid.
  • Carsel, R., Parrish, R. 1988. Developing joint probability of soil water retention characteristics. Water Resources Research, 24(5), 755-769. https://doi.org/10.1029/WR024i005p00755 DOI: https://doi.org/10.1029/WR024i005p00755
  • Chu, S.T. 1994. Green-Ampt analysis of wetting patterns for surface emitters. J. Irrig. Drain E., 120(2), 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:2(414) DOI: https://doi.org/10.1061/(ASCE)0733-9437(1994)120:2(414)
  • Clapp, R.B., Hornberger, G.M. 1978. Empirical equations for soil hydraulic properties. Water Resources Research, 14, 601-604. https://doi.org/10.1029/WR014i004p00601 DOI: https://doi.org/10.1029/WR014i004p00601
  • del Vigo, Á., Zubelzu, S., Juana, L. 2019a. Algoritmo para la resolución de la ecuación de Richards en 3-D para riego por goteo: Método, validación y resultados preliminares. XXXVII Congreso Nacional de Riegos. Don Benito. Spain. https://doi.org/10.17398/AERYD.2019.A06
  • del Vigo, Á., Zubelzu, S., Juana, L. 2019b. Study of water infiltration in soil by Richards equations in 3D: summary and methodology validation. 11th World Congress on Water Resources and Environment. Madrid. Spain. http://ewra.net/pages/EWRA2019_Proceedings.pdf
  • del Vigo, Á., Zubelzu, S. y Juana, L. 2019c. Soluciones analíticas aproximadas bajo hipótesis de Green-Ampt desde fuentes semiesférica y circular en superficie. Jornadas Ingeniería del Agua (J.I.A). Toledo. Spain. https://oa.upm.es/65070/1/INVE_MEM_2019_324240.pdf
  • del Vigo, Á. 2020. Simulación del flujo del agua en el suelo en riego por goteo superficial, soluciones analíticas aproximadas, caracterización del suelo y diseño de los riegos. Tesis doctoral, Universidad Politécnica de Madrid. Madrid. https://doi.org/10.20868/UPM.thesis.63840 DOI: https://doi.org/10.20868/UPM.thesis.63840
  • del Vigo, Á., Zubelzu, S., Juana, L. 2020. Numerical routine for soil dynamics from trickle irrigation. Applied Mathematical Modeling, 83, 371-385. https://doi.org/10.1016/j.apm.2020.01.058 DOI: https://doi.org/10.1016/j.apm.2020.01.058
  • del Vigo, Á., Zubelzu, S., Juana, L. 2021. Infiltration models and soil characterization for hemispherical and disc sources based on Green-Ampt assumptions. Journal of Hydrology, 595, 1259-1266. https://doi.org/10.1016/j.jhydrol.2021.125966 DOI: https://doi.org/10.1016/j.jhydrol.2021.125966
  • del Vigo, Á., Colimba, J., Juana, L., Rodriguez-Sinobas, L. 2023. Numerical model for the simulation of soil water flow under root-absorption conditions. Application to tomato plant crop. Irrigation Sciences, 41, 141-154. https://doi.org/10.1007/s00271-022-00806-x DOI: https://doi.org/10.1007/s00271-022-00806-x
  • Gardner, W.R. 1958. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci., 85, 228-232. https://doi.org/10.1097/00010694-195804000-00006 DOI: https://doi.org/10.1097/00010694-195804000-00006
  • Kaul, R.K., Michael, A.M. 1982. Moisture front advance under point source of water application. J. Agric. Eng., 19(2), 1-8
  • Keyvan, M., Peters, R.T. 2011. Wetting patterns models for drip irrigation: new empirical model. Journal of Irrigation and Drainage Engineering, 137(8), 530-536. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320
  • Mualem,Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Journal, 12, 513. https://doi.org/10.1029/WR012i003p00513 DOI: https://doi.org/10.1029/WR012i003p00513
  • Neuman, S.P. 1976. Wetting front pressure head in the infiltration model of Green and Ampt. Water Resources Research, 12, 564-565. https://doi.org/10.1029/WR012i003p00564 DOI: https://doi.org/10.1029/WR012i003p00564
  • Pullan, A.J., Collins, I.F. 1987. Two and three-dimensional steady quasi-linear infiltration from buried and surface cavities using boundary element techniques. Water Resources Research, 23(8), 1633-1644. https://doi.org/10.1029/WR023i008p01633 DOI: https://doi.org/10.1029/WR023i008p01633
  • Raats, P.A.C. 1971. Steady infiltration from point sources, cavities and basins. Soil Sci. Soc. Am. Proc., 35, 689-694. https://doi.org/10.2136/sssaj1971.03615995003500050020x DOI: https://doi.org/10.2136/sssaj1971.03615995003500050020x
  • Richards, L.A. 1931. Capillary conduction of liquids in porous medium. Journal of Applied Physics, 1, 318-333. https://doi.org/10.1063/1.1745010 DOI: https://doi.org/10.1063/1.1745010
  • Roth, R.L. 1974. Soil moisture distribution and wetting pattern from a point source. Proceedings of 2nd international drip irrigation congress. California. EEUU. 246-251.
  • Schaap, M.G., Leij, F.J., van Genuchten, M.T. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedo-transfer functions. Journal of Hydrology, 251, 163-176. https://doi.org/10.1016/S0022-1694(01)00466-8 DOI: https://doi.org/10.1016/S0022-1694(01)00466-8
  • Schwartzman, M., Zur, B. 1986. Emitter Spacing and Geometry of Wetted Soil Volume. J. Irrig. Drain. Eng., 112(3), 242-253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242) DOI: https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242)
  • Šimůnek, J., van Genuchten, M., Šejna, M. 2006. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual. Version 1.0. University of California Riverside. Riverside, CA, 3PC. Progress, Prague. Czech Republic.
  • Van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • Warrick, A.W. 1974. Time-dependent linearized infiltration: I. Point source. Soil Sci.Soc.Amer. Proc., 34, 383. https://doi.org/10.2136/sssaj1974.03615995003800030008x DOI: https://doi.org/10.2136/sssaj1974.03615995003800030008x
  • Warrick, A.W., Lomen, D.O. 1976. Time-dependent linearized infiltration: III. Strip and disc sources. Soil Sci. Soc. Amer. Proc., 40, 639-643. https://doi.org/10.2136/sssaj1976.03615995004000050014x DOI: https://doi.org/10.2136/sssaj1976.03615995004000050014x
  • Warrick, A.W. 1992. Models for disk infiltrometer. Water Resources Research, 28, 1319-1327. https://doi.org/10.1029/92WR00149 DOI: https://doi.org/10.1029/92WR00149
  • Weir, G.J. 1987. Steady infiltration from small shallow circular ponds. Water Resources Research, 23, 733-736. https://doi.org/10.1029/WR023i004p00733 DOI: https://doi.org/10.1029/WR023i004p00733
  • Wooding, R.A. 1968. Steady infiltration from a shallow circular pond. Water Resources Research, 4, 1259-1273. https://doi.org/10.1029/WR004i006p01259 DOI: https://doi.org/10.1029/WR004i006p01259