Evolución microestructural y envejecimiento dinámico por deformación en la aleación Mg-6%Gd- 1%Zn durante ensayos a tracción y compresión a temperaturas intermedias

  1. Gerardo Garcés 1
  2. Pablo Pérez 1
  3. Rafael Barea 2
  4. Bryan W. Chávez 2
  5. Judit Medina 1
  6. Paloma Adeva 1
  1. 1 Centro Nacional de Investigaciones Metalúrgicas
    info

    Centro Nacional de Investigaciones Metalúrgicas

    Madrid, España

    ROR https://ror.org/04m7z8d34

  2. 2 Universidad Nebrija
    info

    Universidad Nebrija

    Madrid, España

    ROR https://ror.org/03tzyrt94

Aldizkaria:
Revista de metalurgia

ISSN: 0034-8570

Argitalpen urtea: 2018

Alea: 54

Zenbakia: 3

Orrialdeak: 124

Mota: Artikulua

DOI: 10.3989/REVMETALM.124 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Revista de metalurgia

Laburpena

La aleación Mg-6%Gd-1%Zn muestra el fenómeno de serrado durante la deformación a temperaturas intermedias debido al proceso de envejecimiento dinámico provocado por la presencia de átomos de soluto en solución sólida y dislocaciones móviles. Aunque la aleación tiene una textura al azar, se observa un comportamiento diferente en tracción y en compresión. El límite elástico y el endurecimiento es mayor cuando la aleación se ensaya en compresión. Durante la deformación a temperaturas intermedias se ha observado la activación de dislocaciones tipo < a > y maclas de tensión, independientemente del signo de la carga. Sin embargo, la fracción en volumen de maclas es siempre mayor cuando el material se somete a compresión. A temperaturas intermedias, los átomos de Gd y Zn anclan tanto las dislocaciones como las maclas. Por encima de 250 ºC, el fenómeno de serrado desaparece y la presencia de precipitados g´ y g´´ en el plano basal aumenta el endurecimiento.

Finantzaketari buruzko informazioa

We should like to acknowledge financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-R.

Finantzatzaile

Erreferentzia bibliografikoak

  • Agnew, S.R., Brown, D.W., Tomé, C.N. (2006). Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in-situ neutron diffraction. Acta Mater. 54 (18), 4841–4852. https://doi.org/10.1016/j.actamat.2006.06.020
  • Agnew, S.R., Mulay, R.P., Polesak, F.J., Calhoun, C.A., Bhattacharyra, J.J., Clausen, B. (2013). In-situ neutron diffraction and polycrystal plasticity modeling of a Mg–Y–Nd–Zr alloy: Effects of precipitation on individual deformation mechanisms. Acta Mater. 61 (10), 3769–3780. https://doi.org/10.1016/j.actamat.2013.03.010
  • Ball, E.A., Prangnell, P.B. (1994). Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scripta Metall. Mater. 31 (2), 111–116. https://doi.org/10.1016/0956-716X(94)90159-7
  • Cai, X., Fu, H., Guo, J., Peng, Q. (2014). Negative Strain- Rate Sensitivity of Mg Alloys Containing 18R and 14H Long-Period Stacking-Ordered Phases at Intermediate Temperatures. Metall. Mater. Trans. A 45 (9), 3703–3707. https://doi.org/10.1007/s11661-014-2348-4
  • Capek, J., Mathis, K., Clausen, B., Barnett, M. (2017). Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium. Acta Mater. 130, 319–328. https://doi.org/10.1016/j.actamat.2017.03.017
  • Christodoulou, N., Chow, C., Turner, P., Tomé, C., Klassen, R. (2002). Analysis of Steady-State Thermal Creep of Zr-2.5Nb Pressure Tube Material. Metall. Mater. Trans. A 33 (4), 1103–1115. https://doi.org/10.1007/s11661-002-0212-4
  • Clausen, B., Tomé, C.N., Brown, D.W., Agnew, S.R. (2008). Reoritation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Mater. 56 (11), 2456–2468. https://doi.org/10.1016/j.actamat.2008.01.057
  • Couling, S.L. (1959). Yield points in a dilute magnesium-thorium alloy. Acta Metall. 7 (2), 133–134. https://ac.els-cdn. com/000161605990121X/1-s2.0-000161605990121X-main. pdf?_tid=7f605387-13bc-42a4-84b7-20b66f273f2f&acdnat =1530689365_46a9e777b153989b946b48fbcf25e6cf.
  • El Kadiri, H., Oppedal, A.L. (2010). A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J. Mech. Phys. Solids 58 (4), 613–624. https://doi.org/10.1016/j.jmps.2009.12.004
  • Fang, X.Y., Yi, D.Q., Nie, J.F. (2009). The serrated flow behaviour of Mg-Gd-(Mn-Sc) Alloys. Metall. Mater. Trans. A 40, 2761–2771. https://doi.org/10.1007/s11661-009-9967-1
  • Gao, L., Chen, R.S., Han, E.H. (2009). Characterization of dynamic strain ageing in Mg- 3.11wt.%Gd alloy. R.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz (Eds.), Annual conference of TMS, San Francisco, USA, pp. 269–272.
  • Garcés, G., O-orbe, E., Pérez, P., Denks, I.A., Adeva, P. (2009). Evolution of internal strain during plastic deformation in magnesium matrix composites. Mat. Sci. Eng. A-Struct. 523 (1–2), 21–26. https://doi.org/10.1016/j.msea.2009.06.026
  • Garcés, G., O-orbe, E., Pérez, P., Klaus, M., Genzel, C., Adeva, P. (2012a). Influence of SiC particles on compressive deformation of magnesium matrix composites. Mat. Sci. Eng. A-Struct. 533, 119–123. https://doi.org/10.1016/j.msea.2011.10.103
  • Garcés, G., Onorbe, E., Dobes, F., Pérez, P., Antoranz, J.M., Adeva, P. (2012b). Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy. Mat. Sci. Eng. A-Struct. 539, 48–55. https://doi.org/10.1016/j.msea.2012.01.023
  • Garcés, G., Mu-oz-Morris, M.A., Morris, D.G., Pérez, P., Adeva P. (2015). An examination of strain ageing in a Mg-Y-Zn alloy containing Gd. J. Mater. Sci. 50 (17), 5769–5776. https://doi.org/10.1007/s10853-015-9124-8
  • Gavras, S., Zhu, S.M., Nie, J.F., Gibson, M.A., Easton M.A. (2016). On the microstructural factors affecting creep resistance of die-cast Mg–La-rare earth (Nd, Y or Gd) alloys. Mat. Sci. Eng. A-Struct. 675, 65–75. https://doi.org/10.1016/j.msea.2016.08.046
  • Geng, J., Chun, Y.B., Stanford, N., Davies, C.H.J., Nie, J.F., Barnett, M.R. (2011). Processing and properties of Mg–6Gd–1Zn–0.6Zr: Part 2. Mechanical properties and particle twin interactions. Mat. Sci. Eng. A-Struct. 528 (10–11), 3659–3665. https://doi.org/10.1016/j.msea.2011.01.024
  • Gharghouri, M.A., Weatherly, G.C., Embury, J.D., Root, J. (1999). Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philos. Mag. A 79 (7), 1671–1695. https://doi.org/10.1080/01418619908210386
  • Griffiths, D. (2015). Explaining texture weakening and improved formability in magnesium rare earth alloys. Mater. Sci. Technol. 31 (1), 10–24. https://doi.org/10.1179/1743284714Y.0000000632
  • Hantzsche, K., Bohlen, J., Wendt, J., Kainer, K.U., Yi, S.B., Letzig, D. (2010). Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scripta Mater. 63 (7), 725–730. https://doi.org/10.1016/j.scriptamat.2009.12.033
  • He, S.H., Zeng, X.Q., Peng, L.M., Gao, X., Nie, J.F., Ding, W.J. (2007). Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427 (1–2), 316–323. https://doi.org/10.1016/j.jallcom.2006.03.015
  • Herrera-Solaz, V., Hidalgo-Manrique, P., Pérez-Prado, M.T., Letzig, D., Llorca, J., Segurado, J. (2014). Effect of rare earth additions on the critical resolved shear stresses of magnesium alloys. Mater. Lett. 128, 199–203. https://doi.org/10.1016/j.matlet.2014.04.144
  • Hidalgo-Manrique, P., Robson, J.D., Pérez-Prado, M.T. (2017). Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study. Acta Mater. 124, 456–467. https://doi.org/10.1016/j.actamat.2016.11.019
  • Humphreys, A.O., Liu, D., Toroghinejad, M.R., Essadiqi, E., Jonas, J.J. (2003). Warm rolling behaviour of low carbon steels. Mater. Sci. Technol. 19 (6), 709–714. https://doi.org/10.1179/026708303225002848
  • Jiang, L., Jonas, J.J., Mishra, R. (2011). Effect of dynamic strain aging on the appearance of the rare earth texture component in magnesium alloys. Mat. Sci. Eng. A-Struct. 528 (21), 6596–6605. https://doi.org/10.1016/j.msea.2011.05.027
  • Kada, S.R., Lynch, P.A., Kimpton, J.A., Barnett, M.R. (2016). In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119, 145–156. https://doi.org/10.1016/j.actamat.2016.08.022
  • Karaman, I., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J., Tomé, C.N. (2000). Modeling the deformation behaviour of hadfield steel single and polycrystals due to twinning and slip. Acta Mater. 48 (9), 2031–2047. https://doi.org/10.1016/S1359-6454(00)00051-3
  • Kelley, E.W, Hosford, W.F. (1968). Plane-strain compression of magnesium and magnesium alloy crystals. Trans. Metall. Soc. AIME 242, 5–13.
  • Keshavarz, Z., Barnett, M.R. (2006). EBSD analysis of deformation modes in Mg–3Al– 1Zn. Scripta Mater. 55 (10), 915–918. https://doi.org/10.1016/j.scriptamat.2006.07.036
  • Lentz, M., Klaus, M., Wanger, M., Fahreson, C., Beyerlein, I.J., Zecevic, M., Reimers, W., Knezevic, M. (2015). Effect of age hardening on the deformation behavior of a Mg-Y-Nd alloy: In-situ X-ray diffraction and crystal plasticity modeling. Mat. Sci. Eng. A-Struct. 628, 396–409. https://doi.org/10.1016/j.msea.2015.01.069
  • Li, Z., Zheng, J., Chen, B. (2016). Unravelling the Structure of ?≤ in Mg-Gd-Zn: An Atomic-scale HAADF-STEM Investigation. Mater. Charact. 120, 345–348. https://doi.org/10.1016/j.matchar.2016.08.011
  • Nie, J.F., Gao, X., Zhu, S.M. (2005). Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater. 53 (9), 1049–1053. https://doi.org/10.1016/j.scriptamat.2005.07.004
  • Nie, J.F., Oh-ishi, K., Gao, X., Hono, K. (2008). Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater. 56 (20), 6061–6076. https://doi.org/10.1016/j.actamat.2008.08.025
  • Nie, J.F., Zhu, Y.M., Liu, J.Z., Fang, X.Y. (2013). Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 340 (6135), 957–960. https://doi.org/10.1126/science.1229369 PMid:23704567
  • Reed-Hill, R.E. (1973). Role of deformation twinning in determining the mechanical properties of metals: The Inhomogeneity of Plastic Deformation. ASM International, Materials Park, OH, USA, p. 285. .
  • Stanford, N., Atwell, D., Beer, A., Davies, C., Barnett, M.R. (2008). Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 59 (7), 772–775. https://doi.org/10.1016/j.scriptamat.2008.06.008
  • Stanford, N., Sabirov, I., Sha, G., La Fontaine, A., Ringer, S., Barnett, M. (2010). Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metall. Mater. Trans. A 41 (3), 734–743. https://doi.org/10.1007/s11661-009-0107-8
  • Somekawa, H., Watanabe, H., Althaf Basha, D., Singh, A., Inoue T. (2017). Effect of twin boundary segregation on damping properties in magnesium alloy. Scripta Mater. 129, 35–38. https://doi.org/10.1016/j.scriptamat.2016.10.019
  • Tomsett, D.I., Bevis, M. (1969). The formation of stacking faults in {10–12} twins in zinc as a result of slip dislocation-deformation twin interactions. Philos. Mag. A 19 (159), 533–537. https://doi.org/10.1080/14786436908216310
  • Tu, J., Zhang, S. (2016). On the {10–12} twinning growth mechanism in hexagonal close-packed metals. Mater. Design 96, 143–149. https://doi.org/10.1016/j.matdes.2016.02.002
  • Zhongjun, W., Weiping, J., Jianzhong, C. (2007). Study on the Deformation Behavior of Mg-3.6% Er Magnesium Alloy. J. Rare Earth 25 (6), 744–748. https://doi.org/10.1016/S1002-0721(08)60019-8
  • Wang, H., Wang, Q.D., Boehlert, C.J., Yin, D.D., Yuan, J. (2015). Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy. Mater Charact. 99, 25–37. https://doi.org/10.1016/j.matchar.2014.11.006
  • Wang, F., Agnew, S.R. (2016). Dislocation transmutation by tension twinning in magnesium alloy AZ31. Int. J. Plasticity 81, 63–86. https://doi.org/10.1016/j.ijplas.2016.01.012
  • Wu, D., Chen, R.S., Han, E.H. (2012). Serrated flow and tensile properties of a Mg–Gd–Zn alloy. Mat. Sci. Eng. A-Struct. 532, 267–274. https://doi.org/10.1016/j.msea.2011.10.090
  • Yuan, J., Wang, Q., Yin, D., Wang, H., Chen, C., Ye, B. (2013). Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting. Mater. Charact. 78, 37–46. https://doi.org/10.1016/j.matchar.2013.01.012
  • Zhu, S.M., Nie, J.F. (2004). Serrated flow and tensile properties of a Mg–Y–Nd alloy. Scripta Mater. 50 (1), 51–55. https://doi.org/10.1016/j.scriptamat.2003.09.039
  • Zhu, S.M., Gibson, M.A., Easton, M.A., Nie, J.F. (2010). The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Mater. 63 (7), 698–703. https://doi.org/10.1016/j.scriptamat.2010.02.005
  • Zhu, Y.M., Morton, A.J., Nie, J.F. (2012). Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60 (19), 6562–6572. https://doi.org/10.1016/j.actamat.2012.08.022
  • Zhu, Y.M., Bian, M.Z., Nie, J.F. (2017). Tilt boundaries and associated solute segregation in a Mg-Gd alloy. Acta Mater.127, 505–518. https://doi.org/10.1016/j.actamat.2016.12.032
  • Zhu, Y.M, Xu, S.W., Nie J.F. (2018). {1011} Twin boundary structure in a Mg-Gd alloy. Acta Mater. 143, 1–12. https://doi.org/10.1016/j.actamat.2017.09.067