Evaluación de parámetros fisiológicos en función de la saturación de oxigeno muscular en mujeres con sobrepeso y obesidad
- Vasquez-Bonilla, Aldo Alfonso 1
- Camacho-Cardeñosa, Alba 1
- Camacho-Cardeñosa, Marta 1
- Martinez-Guardado, Ismael 1
- Timon, Rafael 1
- Olcina, Guillermo 1
- 1 Facultad de Ciencias del Deporte. Universidad de Extremadura
ISSN: 1885-3137
Año de publicación: 2017
Título del ejemplar: Enero
Volumen: 13
Número: 47
Páginas: 63-77
Tipo: Artículo
Otras publicaciones en: RICYDE. Revista Internacional de Ciencias del Deporte
Resumen
The objective of this study was to compare physiological parameters and correlate function of muscle oxygen saturation and total hemoglobin measured with near-infrared spectroscopy noninvasive. The sample (n = 17 women) were divided into 2 groups: overweight / obese and normal weight, was measured body composition, physiological parameters, saturation of muscle oxygen and index of perceived exertion during testing maximum incremental exercise on a cycle ergometer based titrated four metabolic zones established: fatmax, aerobic threshold, anaerobic threshold and area of maximum oxygen consumption. The results were analyzed using ANOVA statistical method of a factor and Pearson correlation. The results found in the normal weight group muscle oxygen saturation has high positive correlation with VO2max during fatmax zone and aerobic threshold (r = 0,72- p = 0.04) (r = 0.77 - p = 0, 02), the training heart rate (r = -0.87 - p = 0.01) has very high negative correlation in the anaerobic threshold zone, obesity in overweight group no correlation was found. In conclusion women with normal weight oxygen saturation muscle measured with near-infrared spectroscopy noninvasive can be a good physiological parameter to schedule exercise in fatmax areas, aerobic threshold and anaerobic threshold, but in women with overweight and obesity are needed most studies.
Referencias bibliográficas
- Achten, J.; Gleeson, M., & Jeukendrup, A. E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine and Science in Sports and Exercise, 34(1), 92-97. https://doi.org/10.1097/00005768-200201000-00015
- Alemán, J. A; Pilar Sainz., y Ortín, E. J. O. (2014). Guía para la prescripción de ejercicio físico en pacientes con riesgo cardiovascular SEH-LELHA.
- American College of Sports Medicine. (2005). Manual ACSM para la valoración y prescripción del ejercicio Editorial Paidotribo.
- Ara, I.; Larsen, S.; Stallknecht, B.; Guerra, B.; Morales-Alamo, D.; Andersen, J.; PonceGonzález, J. G.; Guadalupe-Grau, A.; Galbo, H.; Calbet, J A L., & Helge, J. W. (2011). Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. International Journal of Obesity, 35(1), 99-108. https://doi.org/10.1038/ijo.2010.123
- Astorino, T. (2000). Is the ventilatory threshold coincident with maximal fat oxidation during submaximal exercise in women? Journal of Sports Medicine and Physical Fitness, 40(3), 209.
- Belardinelli, R.; Georgiou, D., & Barstow, T. (1995). Near infrared spectroscopy and changes in skeletal muscle oxygenation during incremental exercise in chronic heart failure: A comparison with healthy subjects. Giornale Italiano Di Cardiologia, 25(6), 715-724.
- Bellotti, C.; Calabria, E.; Capelli, C., & Pogliaghi, S. (2013). Determination of maximal lactate steady state in healthy adults: Can NIRS help. Med Sci Sports Exerc, 45(6), 1208-1216. https://doi.org/10.1249/MSS.0b013e3182828ab2
- Botero, J. P.; Prado, W. L.; Guerra, R. L.; Speretta, G. F.; Leite, R. D.; Prestes, J.; Adrian V. Lyon S.S.; Paulo H. S. M..; Vilmar, B.; Sergio E. A.; Ana, D., & Rozinaldo, G. da Silva. (2014). Does aerobic exercise intensity affect health-related parameters in overweight women? Clinical Physiology and Functional Imaging, 34(2), 138-142. https://doi.org/10.1111/cpf.12076
- Chicharro, J. L., & Vaquero, A. F. (2006). Fisiologa del ejercicio/Physiology of exercise Ed. Médica Panamericana.
- Clemente-Suarez, V. J. (2015). The importance of intensity in the prescription of health training. [La importancia de la intensidad en la prescripción de entrenamiento para la salud]. RICYDE. Revista Internacional de Ciencias del Deporte. 11(41), 192-195. https://doi.org/10.5232/ricyde2015.041ed
- Coquart, J.; Tourny-Chollet, C.; Lemaitre, F.; Lemaire, C.; Grosbois, J., & Garcin, M. (2012). Relevance of the measure of perceived exertion for the rehabilitation of obese patients. Annals of Physical and Rehabilitation Medicine, 55(9), 623-640. https://doi.org/10.1016/j.rehab.2012.07.003
- Croci, I.; Borrani, F.; Byrne, N.; Wood, R.; Hickman, I.; Cheneviere, X., & Malatesta, D. (2014). Reproducibility of fat max and fat oxidation rates during exercise in recreationally trained males. PloS One, 9(6), e97930. https://doi.org/10.1371/journal.pone.0097930
- El Ferrol, A. M., y Coruña, A. (2006). El paciente con exceso de peso: Guía práctica de actuación en atención primaria. Revista Española de Obesidad, 4(1), 33-44.
- Ferreira, S. S.; Pereira, J. L.; Alves, R. C.; Redkva, P. E.; Elsangedy, H. M.; Krinski, K., ...& Brasil, F. D. P. U. C. P. (2013). Are sedentary women able to self-select a walking intensity that corresponds to maximal fat oxidation (Fatmax). Journal of Exercise Physiology Online, 16(2), 32-40
- Giannakis, G.; Thunenkotter, T.; Weiler, B., & Urhausen, A. (2014). Ergometric performance and cardiovascular profile of obesity clinic patients. Bulletin De La Societe Des Sciences Medicales Du Grand-Duche De Luxembourg, 3(3), 7-24.
- Goodpaster, B. H.; Wolfe, R. R., & Kelley, D. E. (2002). Effects of obesity on substrate utilization during exercise. Obesity Research, 10(7), 575-584. https://doi.org/10.1038/oby.2002.78
- Halim, A. A. A.; Salikin, M. S.; Rusop, M.; Laili, M. H.; Aziz, N. A. M., & Laili, A. R. (2016, March). Evaluation of muscle oxygen consumption at regional level of fatigue using functional near infrared spectroscopy. In Photonics (ICP), 2016 IEEE 6th International Conference on (pp. 1-3). IEEE. https://doi.org/10.1109/icp.2016.7510020
- Hall, M. E.; do Carmo, J. M.; da Silva, A. A.; Juncos, L. A.; Wang, Z., & Hall, J. E. (2014). Obesity, hypertension, and chronic kidney disease. International Journal of Nephrology and Renovascular Disease, 7, 75-88. https://doi.org/10.2147/IJNRD.S39739
- Jentjens, R. L.; Wagenmakers, A. J., & Jeukendrup, A. E. (2002). Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. Journal of Applied Physiology (Bethesda, Md.: 1985), 92(4), 1562-1572. https://doi.org/10.1152/japplphysiol.00482.2001
- Jeukendrup, A. E., & Jentjens, R. (2000). Oxidation of carbohydrate feedings during prolonged exercise. Sports Medicine, 29(6), 407-424. https://doi.org/10.2165/00007256-200029060-00004
- Kuznetsov, S. Y.; Popov, D.; Borovik, A., & Vinogradova, O. (2015). Determination of aerobic–anaerobic transition in the working muscle using EMG and near-infrared spectroscopy data. Human Physiology, 41(5), 548-552. https://doi.org/10.2165/00007256-200029060-00004
- Luque, G. T.; García-Martos, M.; Gutiérrez, C. V., y Vallejo, N. G. (2010). Papel del ejercicio físico en la prevención y tratamiento de la obesidad en adultos. Retos Nuevas Tendencias En Educ Física Deporte Recreación, 18, 47-51.
- Molinari, F.; Martis, R. J.; Acharya, U. R.; Meiburger, K. M.; De Luca, R.; Petraroli, G., & Liboni, W.(2015). Empirical mode decomposition analysis of near-infrared spectroscopy muscular signals to assess the effect of physical activity in type 2 diabetic patients. Computers in Biology and Medicine, 59, 1-9. https://doi.org/10.1016/j.compbiomed.2015.01.011
- Nasseri, N.; Kleiser, S.; Ostojic, D.; Karen, T., & Wolf, M. (2016). Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy. Biomedical Optics Express, 7(11), 4605-4619. https://doi.org/10.1364/BOE.7.004605
- Niemeijer, V. M.; Spee, R. F.; Jansen, J. P.; Buskermolen, A. B.; Dijk, T.; Wijn, P. F., & Kemps H, M.(2015). Test–retest reliability of skeletal muscle oxygenation measurements during submaximal cycling exercise in patients with chronic heart failure. Clinical Physiology and Functional Imaging, [Epub ahead of print]. https://doi.org/10.1111/cpf.12269
- Orsi, J V.; Nahas, F. X.; Gomes, H. C.; Andrade, Carlos, H. V.; Veiga, D. F.; Novo, N. F., & Ferreira, L. M. (2008). Impact of obesity on the functional capacity of women. Revista Da Associação Médica Brasileira, 54(2), 106-109. https://doi.org/10.1590/S0104-42302008000200010
- Perez-Martin, A.; Dumortier, M.; Raynaud, E.; Brun, J. F.; Fedou, C.; Bringer, J., & Mercier, J. (2001). Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes Metab 27(4), 466. https://www.ncbi.nlm.nih.gov/pubmed/11547220
- Rodriguez-Hernandez, H.; Simental-Mendia, L. E.; Rodriguez-Ramirez, G., & ReyesRomero, M. A. (2013). Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. International Journal of Endocrinology, 2013, 678159. https://doi.org/10.1155/2013/678159
- Rubio, M. A.; Salas-Salvadó, J.; Barbany, M.; Moreno, B.; Aranceta, J.; Bellido, D.; Blay, V.; Carraro, R.; Formiguera, X.; Foz, M.; Luis de Pablos, P.; Garcia-Luna, P.; Griera, J.; López de la torre, M.; Martínez, J. A.; Remesar, X.; Tebar, J., y Vidal, J. (2007). Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Revista Española de Obesidad, 5(3), 135-175.
- Ryan, T. E.; Brizendine, J. T., & McCully, K. K. (2013). A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. Journal of Applied Physiology, 114(2), 230-237. https://doi.org/10.1152/japplphysiol.01043.2012
- Sekikawa, K.; Tabira, K.; Sekikawa, N.; Kawaguchi, K.; Takahashi, M.; Kuraoka, T.; Inamizu, T., & Onari, K. (2009). Muscle blood flow and oxygen utilization measured by near-infrared spectroscopy during handgrip exercise in chronic respiratory patients. Journal of Physical Therapy Science, 21(3), 231-238. https://doi.org/10.1589/jpts.21.231
- Skinner, J. S., & McLellan, T. H. (1980). The transition from aerobic to anaerobic metabolism. Research Quarterly for Exercise and Sport, 51(1), 234-248. https://doi.org/10.1080/02701367.1980.10609285
- Snyder, A. C., & Parmenter, M. A. (2009). Using near-infrared spectroscopy to determine maximal steady state exercise intensity. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 23(6), 1833-1840. https://doi.org/10.1519/JSC.0b013e3181ad3362
- Spires, J.; Lai, N.; Zhou, H., & Saidel, G. M. (2011). Hemoglobin and myoglobin contributions to skeletal muscle oxygenation in response to exercise. Oxygen transport to tissue XXXII (pp. 347-352) Springer. https://doi.org/10.1007/978-1-4419-7756-4_47
- Steimers, A; Vafiadou, M; Koukourakis, G; Geraskin, D; Neary, P; & Kohl-Bareis, M. (2016). Muscle oxygenation during running assessed by broad band NIRS. Oxygen transport to tissue XXXVII (pp. 41-47) Springer. https://doi.org/10.1007/978-1-4939-3023-4_5
- Takagi, S; Murase, N; Kime, R; Niwayama, M; Osada, T; & Katsumura, T. (2016). Aerobic training enhances muscle deoxygenation in early post-myocardial infarction. European Journal of Applied Physiology, 116(4), 673-685. https://doi.org/10.1007/s00421-016-3326-x
- Tan, S.; Wang, J.; Cao, L.; Guo, Z., & Wang, Y. (2014). Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women. Clinical physiology and functional imaging. 36, 225-230. http://dx.doi.org/10.1111/cpf.12217
- Valkovic, L.; Chmelik, M.; Ukropcova, B.; Heckmann, T.; Bogner, W.; Frollo, I.; Tschan, H.; Krebs, M.; Bachl, N.; Ukropec, J.; Trattnig, S., & KrÅ¡Å¡áka, M. (2016). Skeletal muscle alkaline pi pool is decreased in overweight-to-obese sedentary subjects and relates to mitochondrial capacity and phosphodiester content. Scientific Reports, 6, 20087. https://doi.org/10.1038/srep20087
- van der Zwaard, S.; Jaspers, R. T.; Blokland, I. J.; Achterberg, C.; Visser, J. M.; Anne, R., ... & de Koning, J. J. (2016). Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold. PloS one, 11(9), e0162914. https://doi.org/10.1371/journal.pone.0162914
- Zorgati, H.; Collomp, K.; Boone, J.; Guimard, A.; Buttelli, O.; Mucci, P.; Amiot, & V; Prieur, F. (2015). Effect of pedaling cadence on muscle oxygenation during highintensity cycling until exhaustion: A comparison between untrained subjects and triathletes. European Journal of Applied Physiology, 115(12), 2681-2689. https://doi.org/10.1007/s00421-015-3235-4