Trivialidad definible de familias de aplicaciones definibles en estructuras o-minimales

  1. Escribano, Jesús
Dirigée par:
  1. Jesús María Ruiz Sancho Directeur/trice
  2. Michel Coste Directeur/trice

Université de défendre: Universidad Complutense de Madrid

Fecha de defensa: 26 octobre 2000

Jury:
  1. Enrique Outerelo Domínguez President
  2. Carlos Andradas Heranz Secrétaire
  3. Tomás Jesús Recio Muñiz Rapporteur
  4. Margarita Otero Domínguez Rapporteur
  5. Alexander Prestel Rapporteur

Type: Thèses

Résumé

El objetivo de la memoria es estudiar la trivialidad de sumersiones (y pares de sumersiones) dentro de la categoría o-minimal. Este es un problema clásico de la Topología Diferencial y con numerosas aplicaciones en la Teoría de singularidades. Para este objetivo ampliamos a la categoría o-minimal diversas construcciones de la geometría semi-algebraica, como el espectro real. Se construye entonces el espectro definible y se relaciona con las familias de objetos definibles. A continuación se estudia un teorema de aproximación de funciones diferenciables definibles por funciones con una clase de diferenciabilidad más alta. Utilizando este resultado de aproximación, y los resultados sobre fibras genéricas en puntos del espectro definible, demostramos la trivialidad de sumersiones definibles propias y de pares de sumersiones propias. Concluimos nuestra memoria aplicando nuestros resultados a la resolución de un problema de Teoría de singularidades, la trivialidad de funciones definibles fuera del conjunto de bifurcación