Tolerancia de estructuras geométricas y combinatorias

  1. Ramos Alonso, Pedro Antonio
Supervised by:
  1. Manuel Abellanas Oar Director

Defence university: Universidad Politécnica de Madrid

Year of defence: 1995

Committee:
  1. Gregorio Hernández Peñalver Chair
  2. Alfredo García Olaverri Secretary
  3. Carme Torras Genís Committee member
  4. Marc Noy Serrano Committee member
  5. Tomás Jesús Recio Muñiz Committee member

Type: Thesis

Teseo: 50688 DIALNET

Abstract

EN ESTA TESIS SE INTRODUCE EL CONCEPTO DE TOLERANCIA DE UNA ESTRUCTURA O PROPIEDAD, GEOMETRICA O COMBINATORIA, DEFINIDA SOBRE UN CIERTO CONJUNTO S, LA TOLERANCIA ES UNA MEDIDA DE LA ESTABILIDAD DE DICHA ESTRUCTURA O PROPIEDAD BAJO PERTURBACIONES DEL CONJUNTO S. EL CALCULO DE LA TOLERANCIA ES UTIL CUANDO LOS DATOS DE ENTRADA ESTAN SUJETOS A ERRORES O EN EL MANTENIMIENTO DINAMICO DE ESTRUCTURAS ASOCIADAS A OBJETOS EN MOVIMIENTO. EL TRABAJO COMIENZA CON EL CALCULO DE LA TOLERANCIA DE LA TRIANGULACION DE DELAUNAY DE UN CONJUNTO DE PUNTOS; ESTA ESTRUCTURA SE UTILIZA TAMBIEN PARA EJEMPLIFICAR VARIANTES DEL CONCEPTO DE TOLERANCIA, COMO LA TOLERANCIA LOCAL O LA REGION DE ESTABILIDAD. A CONTINUACION SE ESTUDIAN MAS EJEMPLOS DE GRAFOS DE PROXIMIDAD, SIENDO DE PARTICULAR IMPORTANCIA EL ARBOL GENERADOR MINIMO EUCLIDEO DE UN CONJUNTO DE PUNTOS Y EL GRAFO DE TODOS LOS VECINOS MAS CERCANOS. EN TODOS LOS CASOS SE DAN ALGORITMOS QUE PERMITEN EL CALCULO DE LA TOLERANCIA EN EL MISMO TIEMPO ASINTOTICO QUE EL PROPIO GRAFO Y EN LA MAYORIA SE DEMUESTRA QUE SON ASINTOTICAMENTE OPTIMOS. FINALMENTE, SE MUESTRA COMO EL CONCEPTO DE TOLERANCIA SIRVE PARA DEFINIR UNA MEDIDA DE CALIDAD PARA LAS SOLUCIONES DE UN PROBLEMA: LA DE MAYOR TOLERANCIA A PERTURBACIONES.